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We present an approach that provides a simple and 
adequate procedure for introducing the concept of 
rolling friction. In addition, we discuss some 
aspects related to rolling motion that are the 
source o f  students' misconceptions. Several 
didactic suggestions are given. 

Rolling motion plays an important role in many 
familiar situations and in a number of technical 
applications, so this kind of motion is the subject of 
considerable attention in most introductory 
mechanics courses in science and engineering. 
However, we often find that students make errors 
when they try to interpret certain situations related 
to this motion. 
It must be recognized that a correct analysis of rolling 
motion requires a good understanding of a number 
of topics in mechanics. Several aspects have been 
shown to be the source of students' misconceptions. 
The first, and possibly the most important, is the one 
related to the role of the frictional force in rolling 
objects, as previously described (Shaw 1979, Salazar 
et a/ 1990, McClelland 1991, Carnero et ol 1993). A 
second aspect refers to the difficulty for students in 
appreciating that translation and rotation occur 
simultaneously in rolling motion. This fact has 
recently been studied by Menigaux (1994), who 
rightly indicates that, in the case of a real body, 
deformation must be included in the analysis of the 
problem. Moreover, in the study of rolling motion 

there is an extra difficulty: most students think that it 
is not possible for a body to roll without slipping 
unless there is a frictional force involved. In fact, 
when we ask students, 'why do rolling bodies come to 
rest?, in most cases the answer is, 'because the 
frictional force acting on the body provides a 
negative acceleration decreasing the speed of the 
body'. In order to gain a good understanding of 
rolling motion, which is bound to be useful in further 
advanced courses. these aspects should be properly 
darified. 
The outline of this article is as follows. Firstly, we 
describe the motion of a rigid sphere on a rigid 
horizontal plane. In this section, we compare two 
situations: (1) rolling and slipping, and ( 2 )  rolling 
without slipping. From the results obtained in this 
study, the case of a real body is considered. Here, the 
concept of rolling resistance is established. 

Rigid sphere moving on a rigid horizontal 
plane 
Let us consider, for instance, a rigid sphere, solid and 
uniform, of mass M and radius r, which is thrown 
horizontally along a rigid horizontal surface with an 
initial velocity v,. To study the motion described by 
the sphere we must consider two phases which are 
dearly different. In the first phase a frictional force (0 
acts on the sphere in the direction opposite to the 
motion of the centre of mass (CM) of the body, as 

I77 



I NEW A P P R O A C H E S  

shown in figure 1, In this stage the sphere rolls and 
slips at  the same time. The dynamic equations that 
describe this situation are 

XF = Ma, - f = M a ,  (1) 

Z T  =/,cy fr = /, a (2) 

where ow is the acceleration of the CM, /, is the 
moment of  inertia about an axis through the 
CM = I M?), and T is the torque with respect to 
the CM. It ys important t o  note that. as the sphere is 
rolling and slipping. we must calculate torques only 
about an axis passing through the CM. This question 
is often the origin of errors, since some authors advise 
the choice of the socalled instantaneous axis (axis 
passing through the point of contact between the 
rolling body and the surface) t o  describe the rolling 
motion, though the use of this axis is possible only for 
rolling bodies without slipping. Although in certain 
situations the choice of the instantaneous axis can 
facilitate the calculation. we have observed that it 
can also lead students into errors. For example, we 
have often found that students take the 
instantaneous axis even in the case of a body that 
rolls and slips at the same time. In our opinion there 
are two reasons why the use of the instantaneous 
axis to describe the motion of rolling bodies should 
not be advised. (i) Students tend to apply the same 
approach regardless of its applicability. (ii) With the 
use of  the instantaneous axis students may forget the 
fact that  translation and rotation occur 
simultaneously. 
Note that f is the sliding frictional force (dynamic 
friction force), since slipping between the sphere and 
the surface occurs, hence this frictional force is given 

Figure 1. Rigid sphere rolling and slipping olong o 
horizontal rigid surface 

bY 

f =  w a g  (3) 
where pr is the coefficient o f  kinetic friction between 
the two surfaces. From equations ( l ) ,  (2) and (3) we 
obtain the acceleration of the CM, as well as the 
angular acceleration of the sphere: 

On the other hand, as the acceleration of the CM and 
the angular acceleration are constants during this 
phase, the corresponding kinematic equations can be 
used to obtain the linear speed (vJ and the angular 

v, = v, - p+g t 
sped (4 

(6) 

wt 
2r 

w =  (7) 

where we have assumed that the sphere was thrown 
without initial angular speed. One should note, from 
the expressions previously derived, the important fact 
that  in this first phase of  the motion the linear and 
rotational quantities are not related through 
v, = rm and a, = re, since the sphere rolls and 
slips at the same time. This point is often the source 
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Figure 2. Linear and angular speeds as functions of 
time for a rigid sphere thrown along a horizontal 
rigid suifacoce (See the text for conditions of the 
motion.) 
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of students' errors, and therefore it must be made 
clear that, although there is a connection between 
translation and rotation, v, # rw and a, # r a  
because of sliding. 
From equations (6) and (7) it can be observed that, 
while the sphere is acquiring angular speed, its linear 
speed gradually decreases. At the point when 
v,= rw. the sphere thereafter rolls at constant 
speed without slipping. At this moment the frictional 
force disappears, and the sphere begins the second 
phase of its motion. In this second stage the sphere 
describes a uniform motion. In figure 2 we have 
plotted v, and w as functions of time for a sphere of 
radius 10 cm. which is thrown horizontally with an 
initial speed of 10 m s-' along a horizontal plane, 
and assuming a coefficient of kinetic friction of 0.1. 
In this figure the two phases of the motion are clearly 
shown. The first phase is described by equations (6) 
and (7). and here a frictional force is involved. The 
second phase corresponds to uniform motion, and 
there is no frictional force. Our experience reveals 
that this is a delicate point in the analysis of rolling 
motion. 
In general, students raise two questions (i) how can 
the frictional force disappear?, (ii) if the frictional 
force disappears, what causes the torque providing 
the rotation? The first question derives from a poor 
understanding of the concept of frictional force; in 
this respect we must remember that a frictional force 
appears (a) when there is a relative motion between 
two surfaces or (b) when there is a force that 
attempts to cause relative motion, though without 
achieving it. Neither of the two conditions occurs in 
the second phase of the motion. Note that when a 
rolling body rolls without slipping, the point of 
contact of the body with the surface is always 
instantaneously a t  rest with respect to the sustaining 
surface. The idea that a torque is necessary to 
maintain rotation is a very common misconception of 
Newton's second law for rotation. Here, we must 
emphasize again that a torque acting on a body 
causes a chonge in its angular speed. 

Rolling friction 

From the preceding section it can be concluded that, 
once the sphere reaches the pure rolling state (rolling 
without slipping), the motion continues indefinitely 
with a constant speed. However, our experience 
shows that, sooner or later, the body stops. To explain 

this fact we must analyse the problem from a real 
point of view. Hitherto we have considered that both 
the body and the surface are perfectly rigid, which is 
not a real situation. In general, we must assume that 
the rolling and/or the sustaining plane deform 
slightly, in such a way that there is not a contact 
point between them, but a contact area. Although, in 
general, the deformation is produced in both 
surfaces, in most cases we can neglect the 
deformation of one of them. In this way we can divide 
the problem into two parts: a deformable body rolling 
along a rigid surface, and a rigid body rolling on a 
deformable surface. 

Deformable body rolling freely on a rigid 
horizontal surface. This would be the case, for 
instance, of an automobile tyre when it is not under 
traction. An interesting study on this subject, 
including more complex situations, has recently been 
published (Tabor 1994). In this case an asymmetric 
deformation takes place, in such a way that the 
normal force exerted by the plane (i.e. horizontal 
surface) on the tyre now acts at a point slightly 
displaced from the theoretical contact point. Figure 3 
shows such a situation. A a consequence, the normal 
force exerts a toque about the CM (see figure 3) 
opposed to the tyre rotation, which causes a 
reduction in the angular speed ofthetyre.This torque 
is given by 

(8) r, = pN 

where p is the displacement of N with respect to the 
action line o f  W p depends essentially on three 
factors: (i) the elastic properties of the rolling body, 
(ii) its radius and (iii) the effective load that the 
tyre bears. Because the torque opposes the tyre 
rotation, it is referred to as rolling friction and is 

I 

Figure 3. Diagmm showing the forces octing on a 
deformable rolhg object moving on a horizontal 
rigid surfoce 
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usually many times smaller than the sliding friction; 
therefore balls and rollers are widely used in many 
technical applications to reduce the friction between 
surfaces. 

Rigid rolling body moving freely on a deformable 
horizontal surface. This is the case of a billiard ball 
moving on a cloth-covered billiard table. Here the 
deformation of the ball can be negleded in relation 
to the deformation of the cloth. The situation that we 
must analyse is shown in figure 4(0). Now the 
reaction force R will be normal to the surface of 
contact, and will be applied a t  a point (A') slightly 
above the theoretical point (A). As a consequence, R 
is not vertical and can be resolved into two 
components+ horizontal component (R,) and a 
vertical component (R,). These two components are 
shown in detail in figure 4(b). 
The equations that govern the motion of the ball. 
according to figure 4(b). are 

(9) - R, = MO, 

R , - W = O  (10) 

(11) R@ - Rr 6 = /,or 

where torques have been taken about the CM. and the 
moment of inertia is expressed about an axis through 
the same point. If the ball rolls without slipping 
(om= ra) then, taking into account the value 
($W) and assuming small deformations ( h  = r), it 
can be immediately deduced from equations (9) and 

(11) that 
R,6 =$RE (12) 

R y 6  > RJ. (13) 

which indicates that 

In this manner, the deceleration of the ball is justified 
by the contribution of two effects: (1) the action of 
the horizontal component (R,) opposed to the 
velocity of the CM of the ball, and (2) a resultant 
torque that provides a deceleration of the rotation. In 
summary, the force R plays the role of a rolling 
resistive force, which explains the deceleration of the 
ball. 

On the other hand, equation (12) can also be 
expressed as 

A = - -  R 5 6  (14) 
R, 7 r 

where 6/r  = sin 0 (see figure 4(b)). Assuming small 
deformations (sin 0 = e and sin p = p) and taking 
into account that R,. = W, we obtain 

R, = R p  = f M g  0 (15) 

so that the rolling resistive force R is a constant force, 
which is determined by the deformation of the 
surface, but independent of the velocity of the ball. 

Moreover, we think that it is possible to give a further 
argument to explain how a rolling body comes to rest. 
The velocity of any point (P) of the rolling body is the 
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Figure 4. (a) Rigid sphere on a deformable surface (b) Detoil o f  the distribution of form acting on the 
sphere. 
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Figure 5. Rigid sphere on a defDnnable surfoce while the velocity of the point A is zero (o), the point A'hos 
o velocity (vx # 0) with respect to the surface (b). 

vector sum of two velocities: the velocity of the CM 
(v,) relative to the surface plus the tangential 
velocity (w x r?) of the point relative to the CM. that 
is 

v, = v, + o x r,. (16) 
For this reason, while the velocity of the point A is 
zero (see figure 5(0)). the velocity of the point A' is 
not zero, but is finite relative to the surface as 
illustrated in figure 5(b). Since there is a relative 
motion between the point A' and the surface. it 
seems correct to consider a sliding frictional force 
acting at the point A'. Given that the sliding frictional 
force is always opposed to the relative motion 
between the two surfaces, it would be valid to 
suppose that this frictional force (f) has a direction 
opposite to the velocity of the point A', as shown in 
figure 5(b). In this manner, the presence of this 
sliding frictional force (f) can also explain the 
decrease of both the angular speed and the 
translational speed of the body. 
In our opinion.this last argument must be taken into 
account as well as the effect caused by the action of 
the force exerted by the surface on the body, as 
established above. An important feature in rolling 
motion consists in appreciating the fact that the 
absence of a sliding frictional force. in the case of a 
rigid body rolling along a rigid surface with a 
constant speed, is due not to the rigidity of the 
bodies but to the fact that the point of contact of the 
body with the surface is instantaneously at  rest. 
Therefore, when a deformation is produced, the 
velocities of the points of contact between the body 
and the surface are not zero, and as a consequence a 

sliding frictional force appears, which contributes to 
stopping the body. 

Concluding remarks 
The treatment presented in this paper may contribute 
to a better understanding of rolling motion, and we 
think that it is highly advisable in a physics 
introductory course. In particular, the use of the 
approach given here can help to essentially clarify 
two points: (1) that a frictional force is not always 
involved in a rolling motion, and ( 2 )  that a complete 
analysis of rolling motion assumes a deformation in 
the rolling surface and/or on the sustaining surface. 
With regard to this last aspect, we think that the 
discussion of the concept of rolling friction could form 
an adequate introduction, which could help students 
in the analysis of more complex physical phenomena. 
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